Förster Resonance Energy Transfer between Core/Shell Quantum Dots and Bacteriorhodopsin

نویسندگان

  • Mark H. Griep
  • Eric M. Winder
  • Donald R. Lueking
  • Gregory A. Garrett
  • Shashi P. Karna
  • Craig R. Friedrich
چکیده

An energy transfer relationship between core-shell CdSe/ZnS quantum dots (QDs) and the optical protein bacteriorhodopsin (bR) is shown, demonstrating a distance-dependent energy transfer with 88.2% and 51.1% of the QD energy being transferred to the bR monomer at separation distances of 3.5 nm and 8.5 nm, respectively. Fluorescence lifetime measurements isolate nonradiative energy transfer, other than optical absorptive mechanisms, with the effective QD excited state lifetime reducing from 18.0 ns to 13.3 ns with bR integration, demonstrating the Förster resonance energy transfer contributes to 26.1% of the transferred QD energy at the 3.5 nm separation distance. The established direct energy transfer mechanism holds the potential to enhance the bR spectral range and sensitivity of energies that the protein can utilize, increasing its subsequent photocurrent generation, a significant potential expansion of the applicability of bR in solar cell, biosensing, biocomputing, optoelectronic, and imaging technologies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revolutionizing the FRET-Based Light Emission in Core-Shell Nanostructures via Comprehensive Activity of Surface Plasmons

We demonstrate the surface-plasmon-induced enhancement of Förster resonance energy transfer (FRET)using a model multilayer core-shell nanostructure consisting of an Au core and surrounding FRET pairs, i.e., CdSe quantum dot donors and S101 dye acceptors. The multilayer configuration was demonstrated to exhibit synergistic effects of surface plasmon energy transfer from the metal to the CdSe and...

متن کامل

Time-Resolved Analysis of a Highly Sensitive Förster Resonance Energy Transfer Immunoassay Using Terbium Complexes as Donors and Quantum Dots as Acceptors

CdSe/ZnS core/shell quantum dots (QDs) are used as efficient Förster Resonance Energy Transfer (FRET) acceptors in a time-resolved immunoassays with Tb complexes as donors providing a long-lived luminescence decay. A detailed decay time analysis of the FRET process is presented. QD FRET sensitization is evidenced by a more than 1000-fold increase of the QD luminescence decay time reaching ca. 0...

متن کامل

Gate Tuning of Förster Resonance Energy Transfer in a Graphene - Quantum Dot FET Photo-Detector

Graphene photo-detectors functionalized by colloidal quantum dots (cQDs) have been demonstrated to show effective photo-detection. Although the transfer of charge carriers or energy from the cQDs to graphene is not sufficiently understood, it is clear that the mechanism and efficiency of the transfer depends on the morphology of the interface between cQDs and graphene, which is determined by th...

متن کامل

Quantum Dots as Acceptors in FRET-Assays Containing Serum

Quantum dots (QDs) are common as luminescing markers for imaging in biological applications because their optical properties seem to be inert against their surrounding solvent. This, together with broad and strong absorption bands and intense, sharp tuneable luminescence bands, makes them interesting candidates for methods utilizing Förster Resonance Energy Transfer (FRET), e. g. for sensitive ...

متن کامل

Small-molecule ligands strongly affect the Förster resonance energy transfer between a quantum dot and a fluorescent protein.

We report herein the study of Förster resonance energy transfer (FRET) between a CdSe/ZnS core/shell quantum dot (QD) capped with three different small-molecule ligands, 3-mercaptopropionic acid (MPA), glutathione (GSH), and dihydrolipoic acid (DHLA), and a hexa-histidine (His(6))-tagged fluorescent protein, mCherry (FP). The Förster radius (R(0)) and the corresponding donor-acceptor distances ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012